
cross root

aria

Motivatio�

� lesser known and therefore underexposed
topi�

� not many resources on the internet 
probably because shadow dom is still a relatively new spec and many

companies still use light dom centred tech stacks/framework�

� lion heavily relies on shadow dom, so it is
very important for us 

cross root aria 
motivation

Design

Code

==

aria 

I) a refresher 

cross root aria 

II) the problem

III) our current solution

IV) future proposals

cross root aria 
table of contents

Design

Code

==

writing accessible components is

usually a matter of applying the

right attributes in the right context

(unfortunately, most sites today are written

without accessibility in mind...)

aria 
a refresher

Design

Code

==

Let’s take a form field as an example

to see what the right application of

aria attributes can mean for end

users (screen reader users in

particular)...

aria 
a refresher

Design

Code

==

aria 
a refresher

Design

Code

==

1

2 < >Zip Code</ >

< >

label label
input

< = >Zip Code</ >

< = >

label label
input

for
id

"zipcode"
"zipcode"

> switch to presentation  
“theory of forms”...

Problem  

IDREFS cannot express relationships

between different DOM trees, c.q.

different shadow roots

cross root aria 
the problem

Design

Code

==

cross root aria 
the problem

Design

Code

==
< = >Zip Code</ >

< >

 #shadowroot

 < = />

</ >

label label
my-input

input
my-input

for

id

"zipcode"

"zipcode"

< = >Zip Code</ >

< = >

label label
input

for
id

"zipcode"
"zipcode"

one shadow root  

two shadow roots 

IDREFS are not working

in complex scenarios these dom

trees can grow quite large and

complex...Think of�

� multiple nested root�

� sibling roots

cross root aria 
the problem

Design

Code

==

cross root aria 
our solution

Design

Code

==

https://github.com/leobalter/cross-root-aria-delegation/blob/main/explainer.md

Possible solution�

� abandon shadow do�

� copy nodes across shadow roots�

� leverage light dom

cross root aria 
our solution

Design

Code

==

Requirement�
� shadow dom encapsulation  

(no style/dom leaks, best api via slots�

� cleanest/best performance 
(no mutation observers needed for id
references�

� respects platform features (like implicit form
submission, registration�

� slots provided by the consumer are respected
(not moved around into shadow dom, causing
potential styling issues) 

cross root aria 
our solution

Design

Code

==

Our solution 
 

Leverage the light dom: it meets all mentioned
requirements    

We mainly do this via our SlotMixin:  

https://lion-web.netlify.app/fundamentals/
systems/core/slotmixin/  

cross root aria 
our solution

Design

Code

==

< > 
 < = >Zip Code</ > 
 #shadowroot 
 < = /></ >

</ >

my-input
label label

slot slot
my-input

slot

name

"label"

"label"

< > 
 < = >Zip Code</ >

</ >

my-input
label label

my-input
slot "label"

refresher: how

slots work 

(content projection) 

code from developer

outcome in browser

cross root aria 
our solution

Design

Code

==
< > 
 < = = >Zip Code</ > 
 #shadowroot 
 < = /></ > 
 < = />

</ >

my-input
label label

slot slot

my-input

slot for

name
id

"label" "generated-id"

"label"
"generated-id"input

< > 
 < = >Zip Code</ >

</ >

my-input
label label

my-input
slot "label"

what if there would  

be an input in shadow

dom?

code from developer

outcome in browser

cross root aria 
our solution

Design

Code

==
< > 
 < = = >Zip Code</ >

 < = = /> 
 #shadowroot 
 < = /></ > 
 < = /></ >

</ >

my-input
label label

slot slot
slot slot

my-input

slot for
slot id

name
name

"label" "generated-id"
"_input" "generated-id"

"label"
"_input"

input

< > 
 < = >Zip Code</ >

</ >

my-input
label label

my-input
slot "label"

how SlotMixin solves

this with private slots

code from developer

outcome in browser

cross root aria 
our solution

Design

Code

==
< > 
 < = = >Zip Code</ >

 < = =

= /> 
 </
 #shadowroot 
 < = /></ > 
 < = /></ >

</ >

my-input
label label

slot slot
slot slot

my-input

slot for
role slot

id

name
name

"label" "generated-id"
"textbox" "_input"  

 "generated-id"

"label"
"_input"

my-styled-input

my-styled-input> 

< > 
 < = >Zip Code</ >

</ >

my-input
label label

my-input
slot "label"

Sometimes we need

style encapsulation

code from developer

outcome in browser

cross root aria 
proposals

Design

Code

==

Spec proposal�

� many proposals exist in different

w3c working group�

� discussed at TPAC of september

2023 

https://eisenbergeffect.medium.com/web-components-at-tpac-2023-f6da57519eb9

cross root aria 
proposals

Design

Code

==

Candidate proposals at TPA�

� exportids 

https://github.com/WICG/aom/blob/gh-

pages/exportid-explainer.m�

� semantic delegate  

https://github.com/alice/aom/blob/gh-

pages/semantic-delegate.m�

� looking for best of both worlds

cross root aria 
proposals

Design

Code

==

�

< = >Zip code</ >

< = >

 #shadowRoot

 | < = />

</ >

label label
my-input

input
my-input

for
id

id exportid

"zipcode::id()"
"zipcode"

" "

inner-zipcode

inner-zipcode

exportids  

simple use case

cross root aria 
proposals

Design

Code

==

�exportids 
forwardids

how to get

deeper

elements?

< = >

 #shadowroot

 | < = ></ >

 | < = = >

 | #shadowroot

 | | < = />

 | </ >

 | < = ></ >

 | < = = >

 | #shadowroot

 | | < = />

 | </ >

 #/shadowroot

 < = >Street address:</ >

 < = >City:</ >

</ >

x-address

slot slot
x-input

input
x-input

slot slot
x-input

input
x-input

label label
label label

x-address

id

name
id forwardids

id exportid

name
id forwardids

id exportid

for
for

"address"

"street-address-label"
"street" " : "

" "

"city-label"
"city" " : "

" "

"address::id()"
"address::id()"

real-input

real-input

real-input

real-input

street-input

city-input

street-input
city-input

cross root aria 
proposals

Design

Code

==

�exportids 
useids

how to access

sibling roots?

< = >

 #shadowroot

 | < = >Gender</ >

</ >

< = >

 #shadowroot

 | < = />

</ >

x-label

label label
x-label

x-input

input
x-input

useids

for

id

id exportid

" : gender::id()"

":host::id()"

"gender"

" "

label-for

label-for

real-input

real-input

cross root aria 
proposals

Design

Code

==

� < = >Zip Code</ >

< = >

 <template shadowrootmode="open"  
 = >

 < = />

 </template>

</ >

label label
fancy-input

input

fancy-input

for
id

id

"zipcode"
"zipcode"

" "
" "

shadowrootsemanticdelegate actualinput
actualinput

semantic
delegat�

� simple�

� edge cases

hard

cross root aria 
proposals

Design

Code

==

Concludin�

� reach consensu�

� wicg -> w3c tpac -> whatwg ->

browser 1 -> interop / baseline ->

all browser�

� in the meantime: we will keep

lion forwards compatible

