
cross root

aria

Motivatio

 lesser known and therefore underexposed
topi

 not many resources on the internet 
probably because shadow dom is still a relatively new spec and many

companies still use light dom centred tech stacks/framework

 lion heavily relies on shadow dom, so it is
very important for us 

cross root aria 
motivation

Design

Code

==

aria 

I) a refresher 

cross root aria 

II) the problem

III) our current solution

IV) future proposals

cross root aria 
table of contents

Design

Code

==

writing accessible components is

usually a matter of applying the

right attributes in the right context

(unfortunately, most sites today are written

without accessibility in mind...)

aria 
a refresher

Design

Code

==

Let’s take a form field as an example

to see what the right application of

aria attributes can mean for end

users (screen reader users in

particular)...

aria 
a refresher

Design

Code

==

aria 
a refresher

Design

Code

==

1

2 < >Zip Code</ >

< >

label label
input

< = >Zip Code</ >

< = >

label label
input

for
id

"zipcode"
"zipcode"

> switch to presentation  
“theory of forms”...

Problem  

IDREFS cannot express relationships

between different DOM trees, c.q.

different shadow roots

cross root aria 
the problem

Design

Code

==

cross root aria 
the problem

Design

Code

==
< = >Zip Code</ >

< >

 #shadowroot

 < = />

</ >

label label
my-input

input
my-input

for

id

"zipcode"

"zipcode"

< = >Zip Code</ >

< = >

label label
input

for
id

"zipcode"
"zipcode"

one shadow root  

two shadow roots 

IDREFS are not working

in complex scenarios these dom

trees can grow quite large and

complex...Think of

 multiple nested root

 sibling roots

cross root aria 
the problem

Design

Code

==

cross root aria 
our solution

Design

Code

==

https://github.com/leobalter/cross-root-aria-delegation/blob/main/explainer.md

Possible solution

 abandon shadow do

 copy nodes across shadow roots

 leverage light dom

cross root aria 
our solution

Design

Code

==

Requirement
 shadow dom encapsulation  

(no style/dom leaks, best api via slots

 cleanest/best performance 
(no mutation observers needed for id
references

 respects platform features (like implicit form
submission, registration

 slots provided by the consumer are respected
(not moved around into shadow dom, causing
potential styling issues) 

cross root aria 
our solution

Design

Code

==

Our solution 
 

Leverage the light dom: it meets all mentioned
requirements    

We mainly do this via our SlotMixin:  

https://lion-web.netlify.app/fundamentals/
systems/core/slotmixin/  

cross root aria 
our solution

Design

Code

==

< > 
 < = >Zip Code</ > 
 #shadowroot 
 < = /></ >

</ >

my-input
label label

slot slot
my-input

slot

name

"label"

"label"

< > 
 < = >Zip Code</ >

</ >

my-input
label label

my-input
slot "label"

refresher: how

slots work 

(content projection) 

code from developer

outcome in browser

cross root aria 
our solution

Design

Code

==
< > 
 < = = >Zip Code</ > 
 #shadowroot 
 < = /></ > 
 < = />

</ >

my-input
label label

slot slot

my-input

slot for

name
id

"label" "generated-id"

"label"
"generated-id"input

< > 
 < = >Zip Code</ >

</ >

my-input
label label

my-input
slot "label"

what if there would  

be an input in shadow

dom?

code from developer

outcome in browser

cross root aria 
our solution

Design

Code

==
< > 
 < = = >Zip Code</ >

 < = = /> 
 #shadowroot 
 < = /></ > 
 < = /></ >

</ >

my-input
label label

slot slot
slot slot

my-input

slot for
slot id

name
name

"label" "generated-id"
"_input" "generated-id"

"label"
"_input"

input

< > 
 < = >Zip Code</ >

</ >

my-input
label label

my-input
slot "label"

how SlotMixin solves

this with private slots

code from developer

outcome in browser

cross root aria 
our solution

Design

Code

==
< > 
 < = = >Zip Code</ >

 < = =

= /> 
 </
 #shadowroot 
 < = /></ > 
 < = /></ >

</ >

my-input
label label

slot slot
slot slot

my-input

slot for
role slot

id

name
name

"label" "generated-id"
"textbox" "_input"  

 "generated-id"

"label"
"_input"

my-styled-input

my-styled-input> 

< > 
 < = >Zip Code</ >

</ >

my-input
label label

my-input
slot "label"

Sometimes we need

style encapsulation

code from developer

outcome in browser

cross root aria 
proposals

Design

Code

==

Spec proposal

 many proposals exist in different

w3c working group

 discussed at TPAC of september

2023 

https://eisenbergeffect.medium.com/web-components-at-tpac-2023-f6da57519eb9

cross root aria 
proposals

Design

Code

==

Candidate proposals at TPA

 exportids 

https://github.com/WICG/aom/blob/gh-

pages/exportid-explainer.m

 semantic delegate  

https://github.com/alice/aom/blob/gh-

pages/semantic-delegate.m

 looking for best of both worlds

cross root aria 
proposals

Design

Code

==

< = >Zip code</ >

< = >

 #shadowRoot

 | < = />

</ >

label label
my-input

input
my-input

for
id

id exportid

"zipcode::id()"
"zipcode"

" "

inner-zipcode

inner-zipcode

exportids  

simple use case

cross root aria 
proposals

Design

Code

==

exportids 
forwardids

how to get

deeper

elements?

< = >

 #shadowroot

 | < = ></ >

 | < = = >

 | #shadowroot

 | | < = />

 | </ >

 | < = ></ >

 | < = = >

 | #shadowroot

 | | < = />

 | </ >

 #/shadowroot

 < = >Street address:</ >

 < = >City:</ >

</ >

x-address

slot slot
x-input

input
x-input

slot slot
x-input

input
x-input

label label
label label

x-address

id

name
id forwardids

id exportid

name
id forwardids

id exportid

for
for

"address"

"street-address-label"
"street" " : "

" "

"city-label"
"city" " : "

" "

"address::id()"
"address::id()"

real-input

real-input

real-input

real-input

street-input

city-input

street-input
city-input

cross root aria 
proposals

Design

Code

==

exportids 
useids

how to access

sibling roots?

< = >

 #shadowroot

 | < = >Gender</ >

</ >

< = >

 #shadowroot

 | < = />

</ >

x-label

label label
x-label

x-input

input
x-input

useids

for

id

id exportid

" : gender::id()"

":host::id()"

"gender"

" "

label-for

label-for

real-input

real-input

cross root aria 
proposals

Design

Code

==

 < = >Zip Code</ >

< = >

 <template shadowrootmode="open"  
 = >

 < = />

 </template>

</ >

label label
fancy-input

input

fancy-input

for
id

id

"zipcode"
"zipcode"

" "
" "

shadowrootsemanticdelegate actualinput
actualinput

semantic
delegat

 simple

 edge cases

hard

cross root aria 
proposals

Design

Code

==

Concludin

 reach consensu

 wicg -> w3c tpac -> whatwg ->

browser 1 -> interop / baseline ->

all browser

 in the meantime: we will keep

lion forwards compatible

